3-METHYL-2-PHOSPHANAPHTHALENE H.G. de Graaf, J. Dubbeldam, H. Vermeer, and F. Bickelhaupt Scheikundig Laboratorium der Vrije Universiteit De Lairessestraat 174, Amsterdam-Z, The Netherlands (Received in UK 10 May 1973; accepted for publication 18 May 1973) Phosphorus analogues of benzene^{1,2}, anthracene³ and phenanthrene⁴ have been known for several years. The corresponding analogues of naphthalene, however, appeared to be less readily accessible. Recently, Märkl and Heier reported the synthesis of a derivative of 1-phosphanaphthalene, 2-phenylbenzo[b]phosphorin (I)⁵. By a different approach, namely using our previously developed method of HCl-elimination from a dihydroprecursor^{3,4} in the final step, we have prepared the first derivative of 2-phosphanaphthalene, 3-methylbenzo[c]phosphorin (II); similarly, evidence was obtained for the formation of the unsubstituted parent heterocycle III in solution. $$\bigcirc\bigcirc\bigcirc_{\mathsf{p}}^{\mathsf{p}}_{\mathsf{C}_{\mathsf{e}}\mathsf{H}_{\mathsf{p}}}^{\mathsf{c}}_{\mathsf{l}}$$ Starting from diethyl benzylphosphonite (IVa) we obtained the ketophosphinic acid Va (m.p. $204-205^{\circ}$ C) in analogy to Henning's synthesis of Vb from IVb⁶. Reduction of Va with NaBH₄ in H₂O and dehydration by heating with 10% H₂SO₄ yielded VI (53% yield; m.p. $200-202^{\circ}$ C); ¹H NMR spectrum (D₆-DMSO): δ 7.35-7.10 (m, 4.5 H, arom. + 0.5 vinylic H), 7.10 (s, 1H, -OH), 6.63 (q, 0.5 H, 0.5 vinylic H), 3.12 (d, 2H, -CH₂-), 1.95 (d of d, 3H, CH₃). Reaction with thionyl chloride converted VI into its acid chloride which was reduced at -15° C by LiAlH₄ in ether to the secondary phosphine VII which was purified by molecular distillation (21% yield; b.p. ca. 80° C at 10^{-1} Torr.); NMR spectrum (CDCl₃, external TMS): δ 7.70-7.40 (m, 4H, arom.), 7.22 (d of q, 3 J_{PH} 9 Hz, 3 J_{HH} 1.5 Hz, 1H, vinylic H), 4.26 (broad s, 1H, P-H), 3.32 (d, 2 J_{PH} 7.5 Hz, 2H, -CH₂-), 2.54 (d of d, 3 J_{PH} 12 Hz, 3 J_{HH} 1.5 Hz, 3H, CH₃). The singlet for the phosphine proton is remarkable; however, its presence followed unambiguously from the IR spectrum (ca. 8% in CHCl₃), which has a P-H stretch vibration at 2250 cm⁻¹. By reaction with phosgene in toluene (during one hour slowly warmed from -196° C to room temperature), VII was converted to the corresponding chlorophosphine which was not isolated but treated with 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU) in a high vacuum sealed vessel. Filtration from DBU.HCl, evaporation of the filtrate, extraction of the residue with n-hexane and vacuum sublimation of the residue yielded white crystals of II (ca. 10% yield from VII, m.p. 64.5-69° C). Fig. 1. 100 MHz NMR spectrum of II in $CDCl_{\tau}$ The structure of II follows from the elemental analysis and from its spectral data. NMR spectrum (see Fig. 1) (100 MHz, CDCl $_3$, external TMS): 9.84 (d, $^2\mathrm{J}_{\mathrm{PH}}$ 35 Hz, 1H, H 1), 8.57 (d, $^3\mathrm{J}_{\mathrm{PH}}$ 7.5 Hz, 1H, H 4), 8.35-7.85 (m, 4H, benzo-C $_6\mathrm{H}_4$), 3.30 (d, $^3\mathrm{J}_{\mathrm{PH}}$ 13.5 Hz, 3H, CH $_3$); chemical shifts and coupling constants are in accordance with those of Märkl 8 and Ashe 2 for phosphabenzenes. UV spectrum (diethyl ether): λ_{max} 252 nm (ϵ = 28850), 304 nm (6630), 343 nm (450), and 360 nm (270); the spectrum disappeared rapidly on admission of air. The general agreement with UV spectra of naphthalene and isoquinoline derivatives is obvious; however, there is no simple trend in λ_{max} or in ϵ . Mass spectrum: m/e 160, 100% (M ‡); 128, 94% [(M-PH) ‡ = C $_{10}\mathrm{H}_8$ ‡]; 80, 12% (M $^{2+}$). ۷I The residue from the sublimation of II was a white, crystalline, air sensitive material (m.p. $92-96^{\circ}$ C) which has not yet been fully characterized. Its mass spectrum [m/e 322, 30% (M_{\bullet}^{+}); 162, 100%; 161, 66%; 160, 74%; 128, 78%], IR spectrum (absence of P-H stretch vibrations) and oxidation with warm dilute HNO₃ to VI point to structure VIII. VII In a similar fashion we tried to prepare III; due to lack of material and to instability of intermediate products the secondary phosphine analogous to VII could not be purified. Consequently, its reaction with COCl₂ and DBU led to a complex mixture from which no III could be isolated so far; however, its presence in solution follows from the appearance of a maximum at 305 nm on addition of DBU to the chlorophosphine. ## References - 1. G. Märkl, Angew. Chem. 78, 907 (1966) - 2. A.J. Ashe, III, <u>J. Amer. Chem. Soc. 93</u>, 3293 (1971) - P. de Koe and F. Bickelhaupt, <u>Angew. Chem. 79</u>, 533 (1967); <u>Angew. Chem. 80</u>, 912 (1968) - 4. P. de Koe, R. van Veen and F. Bickelhaupt, Angew. Chem. 80, 486 (1968); P. de Koe, Thesis, Amsterdam, 1969 - 5. G. Märkl and K.-H. Heier, Angew. Chem. 84, 1067 (1972) - 6. H.G. Henning, <u>Z. Chem.</u> <u>5</u>, 417 (1965) - 7. Attempts to isolate the unsubstituted chlorophosphine were unsuccessful; compare also: D.K. Myers and L.D. Quin, <u>J. Org. Chem.</u> <u>36</u>, 1285 (1971) - 8. G. Märkl, F. Lieb, and A. Merz, <u>Angew. Chem. 79</u>, 947 (1967)